Audio-Visual Synchronization Algorithms in Digital Humans and the TIME_WAIT Challenge in WebSocket Communication

1. Introduction: The Dual Challenge of Building a “Real-Time” System


2. Precise Synchronization: The Mechanism Behind Audio-Visual Coordination

2.1 Why Synchronization Is Hard: Technical Asymmetry at Its Core

2.2 System Architecture and Core Components

2.2.1 SingleFrameVideoStreamTrack: Frame-Level Controlled Video Stream

class SingleFrameVideoStreamTrack(VideoStreamTrack):
    def __init__(self, frame=None, fps=30):
        super().__init__()
        self._current_frame = frame if frame is not None else np.zeros((2160, 3840, 3), dtype=np.uint8)
        self._start_time = time.monotonic()
        self._time_base = fractions.Fraction(1, 90000)  # 90kHz timebase
        self._fps = fps

    async def recv(self):
        elapsed = time.monotonic() - self._start_time
        pts = int(elapsed * 90000)  # Timestamp in 90kHz
        if isinstance(self._current_frame, VideoFrame):
            frame = self._current_frame
        else:
            frame = VideoFrame.from_ndarray(self._current_frame, format="bgr24")
        frame.pts = pts
        frame.time_base = self._time_base
        return frame

    async def update_frame(self, new_frame):
        if isinstance(new_frame, VideoFrame):
            arr = new_frame.to_ndarray(format="bgr24")
        else:
            arr = new_frame
        self._current_frame = arr

2.2.2 SingleFrameAudioStreamTrack: Finely Sliced Audio Stream

class SingleFrameAudioStreamTrack(AudioStreamTrack):
    kind = "audio"

    def __init__(self, sample_rate=24000, channels=1):
        super().__init__()
        self.sample_rate = sample_rate
        self.channels = channels
        self._time_base = fractions.Fraction(1, sample_rate)
        self.audio_queue = deque(maxlen=100)
        self._samples_sent = 0

    async def recv(self):
        if self.readyState != "live":
            raise MediaStreamError

        while not self.audio_queue:
            await asyncio.sleep(0.001)

        pcm = self.audio_queue.popleft()
        samples = pcm.shape[0]

        frame = AudioFrame(format="s16", layout="mono", samples=samples)
        frame.sample_rate = self.sample_rate
        frame.time_base = self._time_base
        frame.planes[0].update(pcm.tobytes())

        frame.pts = self._samples_sent
        self._samples_sent += samples
        return frame

    def push_audio_data(self, pcm_int16: np.ndarray):
        self.audio_queue.append(pcm_int16)

2.3 Timeline Alignment Mechanism

2.3.1 Unified Time Anchor: start_time = time.monotonic()

start_time = time.monotonic()

2.3.2 Audio Coroutine: Pushing One Audio Chunk Precisely Every 20ms

sample_rate = 24000
audio_chunk_duration = 0.02  # 20 ms
chunk_samples = int(sample_rate * audio_chunk_duration)

async def audio_task():
    pos = 0
    idx = 0
    while pos < total_samples and not share_state.in_break and not share_state.should_stop:
        # Calculate when to push the next audio chunk
        target = start_time + idx * audio_chunk_duration
        now = time.monotonic()
        if now < target:
            await asyncio.sleep(target - now)

        # Slice and normalize PCM samples
        end = min(pos + chunk_samples, total_samples)
        block = waveform[pos:end]
        if len(block) < chunk_samples:
            block = np.pad(block, (0, chunk_samples - len(block)))
        pcm = (block * 32767).astype(np.int16)  # Convert float32 to int16 PCM

        audio_track.push_audio_data(pcm)  # Send to aiortc AudioStreamTrack

        pos = end
        idx += 1

2.3.3 Video Coroutine: Frame-by-Frame Updates with Accurate PTS Stamping

fps = 30  # Video frame rate

async def video_task():
    for i in range(frame_count):
        if share_state.in_break or share_state.should_stop:
            break

        # Calculate when to show the i-th frame
        target = start_time + i / fps
        now = time.monotonic()
        if now < target:
            await asyncio.sleep(target - now)

        img = frames[i]
        vf = VideoFrame.from_ndarray(img, format="bgr24")

        # Stamp pts using elapsed time in 90kHz units
        t_sec = time.monotonic() - start_time
        vf.pts = int(t_sec * 90000)
        vf.time_base = fractions.Fraction(1, 90000)

        await track.update_frame(vf)

2.3.4 Parallel Execution: Asynchronous Launch of Audio and Video Coroutines

task_a = asyncio.create_task(audio_task())
task_v = asyncio.create_task(video_task())
await task_a
task_v.cancel()  # Stop video task once audio ends

2.3.5 Summary: Core Principles of the Timeline Alignment Mechanism


3. In-Depth Look at WebSocket and the TIME_WAIT State

3.1 The Intended Role of TIME_WAIT

3.2 How TIME_WAIT Accumulates in WebSocket Use

3.2.1 Problem 1: Frequent Disconnects Cause TIME_WAIT Overload

3.2.2 Problem 2: High Concurrency Consumes All Available Ports

3.3 Mitigation Strategies: From Kernel to Architecture

3.3.1 Kernel-Level Tuning (Linux)

# Enable TCP TIME-WAIT socket reuse (Recommended)
net.ipv4.tcp_tw_reuse = 1

# Reduce TIME-WAIT timeout (Moderate adjustment)
net.ipv4.tcp_fin_timeout = 30

# TCP Keepalive settings (Prevent zombie connections)
net.ipv4.tcp_keepalive_time = 600    # Start keepalive probes after 600s idle
net.ipv4.tcp_keepalive_intvl = 30    # Interval between keepalive probes
net.ipv4.tcp_keepalive_probes = 3    # Number of probes before declaring dead

3.3.2 Socket-Level Configuration Recommendations

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)

4. Conclusion: A Stable System Is the Foundation of Experience

Leave a Reply

Your email address will not be published. Required fields are marked *

Latest Posts