Building a Voice-Controlled Robot Using OpenAI Realtime API: A Full-Link Implementation from RDK X5 to ES02

1. Introduction: Enabling Robots to Understand Human Language

2. Project Demonstration Effects and Basic Principles

【Voice Input】 → 【RDK X5 captures audio】 → 【Send to OpenAI Realtime API】
                         ↓
       【OpenAI real-time transcription + intent recognition + function call】
                         ↓
       【Structured action command generated】 → 【Parsed by local Python module】
                         ↓
       【Control values generated for serial output】 → 【Sent via SBUS to ES02 control board】
                         ↓
       【Robot executes physical movement】 → 【Feedback completed】
Voice Input → Speech Recognition (Whisper / Google) → Text Output → NLP Analysis → Match Control Command → Call Action Function
Voice input → OpenAI Realtime API → Real-time recognition + Function Calling → Automatically triggers action functions

4. Deployment and Operation: From GitHub to Power Control (Suitable for General Users)

git clone https://github.com/fuwei007/Navbot-ES02/tree/main/src/RDK_X5
pip install openai websocket-client pyaudio python-dotenv pyserial
OPENAI_API_KEY=sk-proj-xxx
ADVANCE_DEFAULT_VALUE=10
RETREAT_DEFAULT_VALUE=10
LEFT_ROTATION_DEFAULT_VALUE=90
RIGHT_ROTATION_DEFAULT_VALUE=90
LEG_LENGTH_DEFAULT_VALUE=5
python Realtime.py

🎉 At this point, the deployment is complete. You can tell the robot to “move forward,” “turn around,” or “squat,” and it will respond accurately! If you wish to learn more about the code implementation details, you can continue reading this article.

6. Frequently Asked Questions and Optimization Suggestions

6.1 Connection Failure or Timeout

6.2 Audio Stuttering or Delay

6.3 Inaccurate Action Execution

7.Conclusion

Leave a Reply

Your email address will not be published. Required fields are marked *

Latest Posts